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Why Association Rules? Some security applications

Malware detection [e.g. Ding et al. Computers & Security 2013]

Hypothesis: malicious behavior exhibited by system calls.

Data: API calls and frequencies: Obtained from Windows PE head file

Stepping-stone detection [e.g. Hsiao et al. Sec. and Comm. Networks 2013]

Stepping stones are intermediate hosts on the path from an hacker to a victim

Network connection records: Each transaction contains a number of pairs (s, t) where s, t are IP
addresses, s — source, t - destination



UNIVERSITY OF HOUSTON | CS@UH

What are Frequent ltem Sets?

Originally proposed by Agrawal, Imielinski, and Swami in Journal of the
Association for Information Systems (1993).

Frequent Iltemsets are a frequently occurring pattern in data.

Applications:
Shopping Cart analysis
What do people frequently buy together.
DNA sequence analysis
Which genes react to certain medication?
Website Traffic

Which sites does someone who uses Reddit a lot also go to?
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F req ue nt Patte s Social Network Behavior:

Private Friend List Public Friend List

Itemset: A non-empty set of items.

k-ltemset: An itemset with k elements.

Support: The frequency of occurrences of
a specific itemset in the dataset.

Relative Support: The probability of an itemset
in the dataset.

Frequent Itemset: An itemset is frequent Phishing Victim

if it occurs as many times as the

minimum support threshold. <> Person
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ASSOCIatlon Ru IeS Social Network Behavior: e

List

FB Public Friend List

Objective: Find all rules X—Y within the
minimum support threshold and
minimum confidence threshold.

Confidence: The probability P(Y]X), the
probability of an itemset having Y if it already
has X.

Public Friend List— Phishing Victim

Support: 6 out of 12
Confidence: 66.67%

Phishing Victim — Public Friend List

<&

Phishing Victim

Support: 6 out of 12, Confidence: 75% <> Person
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Issues with finding pattern
Long patterns contain exponentially many sub-patterns.

If a pattern contains N items, there are 2N sub-patterns.

Dealing with exponential anything is too computationally expensive.

Alternatives to finding every rule is to find closed patterns and max-patterns.

Closed patterns: An itemset is closed if there's no itemset that contains it with
the same support count.

Using only closed patterns is akin to compression.

Max-patterns: An itemset is a max-pattern if there's no frequent itemset that contains it.
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Downward Closure Property and Scalable Mining

If X is frequent, then every subset of X is frequent.

“FB public friends”, “Myspace public friends”, “Phishing victim” is frequent, therefore “FB
public friends”, “Myspace public friends” and “FB public friends”, “Phishing victim”
are, too.

Scalable Mining Methods:
Apriori
Frequent Pattern Growth

Vertical Data Format
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Apriori

Apriori Pruning Principle
If there is an infrequent itemset, do not test or generate its supersets.

Method

Collect all frequent 1-itemsets.
From all collected k-itemsets, generate candidate (k+1)-itemsets.
Prune candidates of infrequent itemsets and collect the frequent ones.

Repeat until no new candidates can be generated or all candidates generated in the last pass
were pruned.
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Example Run of Apriori

Frequent 1-itemsets
A B.C.D Dataset

Generate Candidates A C.D

AB, AC, AD, BC, BD, CD

Frequent 2-itemsets B,C

AC, BC A, B, C
Generate Candidates
B, D

No candidates to generate
ABC contains AB which is infrequent. Minimum Support Threshold: 2
Frequent ltemsets:
A, B,C,D,AC,BC
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How to Count Candidate's Supports

Calculating Candidate's Supports is computationally intensive.

For every k-itemset, there are up to N-k candidate (k+1)-itemsets, where N is the number of
distinct items in the dataset.

The Hashtree Method

Candidate itemsets are stored in a hashtree.
Leaves: Lists of itemsets and counts.
Interior Nodes: Hashtable.

Subset function: Find all candidates contained in a transaction.
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Counting Candidate Support Using a Hashtree
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Generating Association Rules from Frequent
ltemsets

Frequent itemsets are not the same thing as association rules.
X—Y is an association rule if

X and Y are disjoint and nonempty.

Support of X—Y = the support of XUY.

Confidence of X—Y = the support of XUY / the support of X.

Confidence of X—Y = minimum confidence threshold.

Example:

“FB Private Friend”, “Phishing victim” has support 50%
FB Private Friend and Phishing victim separately have support 75%
FB Private Friend — Phishing victim is an association rule with support 50% and confidence 66.67%
Phishing victim — FB Private Friend is an association rule with support 50% and confidence 66.67%



