

Anomaly Detection

Rakesh Verma

Anomaly Detection

Outliers are instances which are dissimilar from the rest of the dataset.

Proximity-based approaches

Outliers are significantly dissimilar from the dataset than other non-outliers.

Distance-based

If there are not enough points close to an instance, then it is an outlier.

Density-based

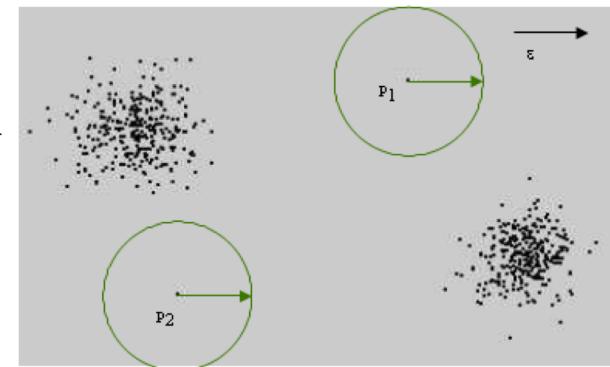
If the density of an instance is much lower than its nearby instances, it is an outlier.

DB(ε, π) Outliers

Given a radius ε and percentage π

A point is an outlier if at most π percent of all other points are closer than ε .

$$\text{OutlierSet}(\varepsilon, \pi) = \{p \mid \frac{\text{Card}(\{q \in DB \mid \text{dist}(p, q) < \varepsilon\})}{\text{Card}(DB)} \leq \pi\}$$



Distance-based Approaches

Index-based

Compute distance range join using spatial index structure

Exclude point from further consideration if its ϵ -neighborhood contains $n\pi$ points.

Nested loop-based

Divide buffer into two parts

Compare all points in first part with all points in second part

Grid-based

Build a grid such that points in the same cell are at most away from each other

Only compare points in neighboring cells.

Deriving Intensional Knowledge

Find the minimal set of attributes responsible for meeting outlier criterion.

Player Name	Power-play Goals	Short-handed Goals	Game-winning Goals	Game-tying Goals	Games Played
MARIO LEMIEUX	31	8	8	0	70
JAROMIR JAGR	20	1	12	1	82
JOHN LECLAIR	19	0	10	2	82
ROD BRIND'AMOUR	4	4	5	4	82

Derived Intensional
Knowledge →

MARIO LEMIEUX:

- (i) An outlier in the 1-D space of Power-play goals
- (ii) An outlier in the 2-D space of Short-handed goals and Game-winning goals
(No player is exceptional on Short-handed goals alone;
No player is exceptional on Game-winning goals alone.)

ROD BRIND'AMOUR:

- (i) An outlier in the 1-D space of Game-tying goals

JAROMIR JAGR:

- (i) An outlier in the 2-D space of Short-handed goals and Game-winning goals
(No player is exceptional on Short-handed goals alone;
No player is exceptional on Game-winning goals alone.)
- (ii) An outlier in the 2-D space of Power-play goals and Game-winning goals

kNN-based Approaches

k-Nearest Neighbors (kNN) selects k nearest points using a distance measure.

Using these distances from its k nearest points, we can calculate the outlier score.

Alternatively, aggregate all kNN outlier scores from 1 to k as the outlier score.

Loop-Based

For each instance, calculate its distance to every other point.

Sort and pick the closest k points.

Partition-Based

Cluster data first

Perform kNN within each cluster

This allows us to skip calculation of distances between far clusters.

Distance-based Top- n Outliers

Linearization

Map n -dimensional space to a 1-dimensional space using space filling curve.

Partition space-filling curve into micro clusters

Use kNN with those micro clusters to identify outliers.

The basic space-filling curves is a curve that bijectively map from 1D space to 2D.

Generalizing the idea allows this method to use any-dimensional space filling curve on any dataset.

ORCA

Randomly pick n outliers and scan forward.

If you find a point with higher outlier score than a current outlier, prune the lowest score

Works with any scoring measure

RBRP

Use pruning method with micro-cluster kNN method

Prunes are more impactful and happen less often

Distance-based Top- n Outliers (Continued)

In-degree, Graphical Method

Construct a graph for kNN

Vertices are instances

Directed edges from an instance p to its k-Nearest Neighbors

Vertices with in-degree less than a threshold T are outliers.

i.e. points with few neighbors are outliers

Resolution-based Outlier Factor

$$ROF(p) = \sum_{R_{\min} \leq r \leq R_{\max}} \frac{clusterSize_{r-1}(p) - 1}{clusterSize_r(p)}$$

Points are either outliers or in clusters.

Select R_{\min} and R_{\max} as extrema for cluster count.

For a given point p ,

Sum over the percentage change in p 's cluster as we allow more clusters from R_{\min} to R_{\max} .

Density-based Approaches

Use the density at a current point as the points outlier score.

Assume that density around normal data objects are similar to their neighbors.

Assume that density around outlier data objects are dissimilar to their neighbors.

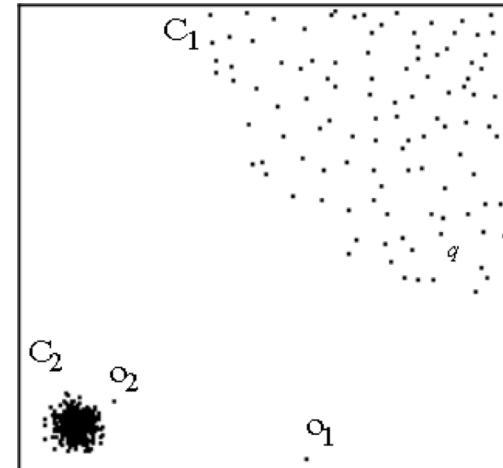
Density-based Approaches

Local Outlier Factor

Use relative densities of nearby points to determine outliers.

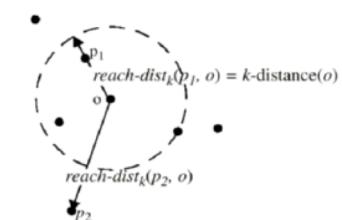
DB(ϵ, π) method fails to identify o_2 as an outlier without classifying all of C_1 as outliers.

kNN approaches have difficulty with handling two different distances as well.



$$\text{reach-dist}_k(p, o) = \max\{k\text{-distance}(o), \text{dist}(p, o)\}$$

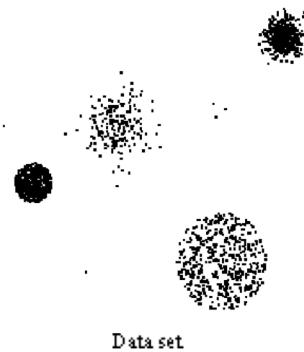
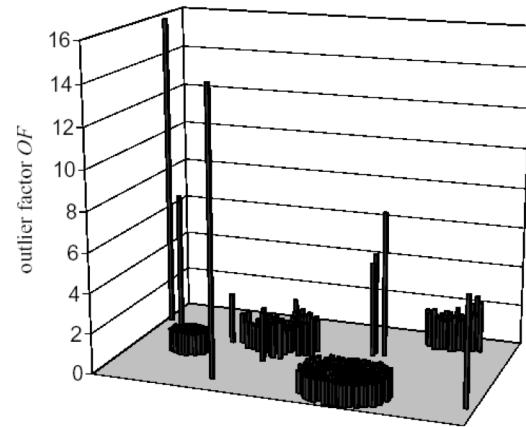
$$\text{lrdf}_k(p) = 1 / \left(\frac{\sum_{o \in kNN(p)} \text{reach-dist}_k(p, o)}{\text{Card}(kNN(p))} \right) \quad LOF_k(p) = \frac{\sum_{o \in kNN(p)} \text{lrdf}_k(o)}{\text{lrdf}_k(p)}$$



Properties of Local Outlier Factor

Local Outlier Factor is approximately 1 in a cluster.

Local Outlier Factor is far greater than 1 for outliers.



Variants of Local Outlier Factor

Mining Top- n local outliers

Use BIRCH to construct clusters

Derive bounds for reachability-distances, lrd-values, and LOF values inside clusters

Sort dataset by LOF values

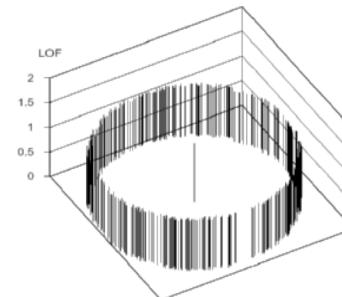
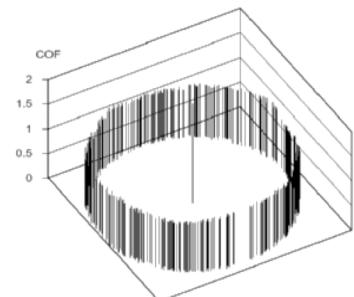
Prune clusters which cannot contain outliers by the constraints places on LOF, lrd, and reachability bounds.

Repeat the process on the pruned set

Connectivity-based outlier factor

Treat low-density and no-density differently.

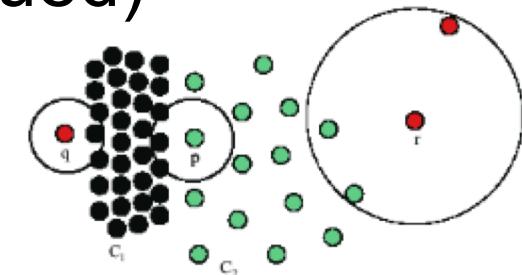
Works where isolated points would otherwise be difficult to discern from low density non-outliers.



Variants of Local Outlier Factor (Continued)

Influenced Outlierness (INFLO)

Close proximity clusters make it difficult for LOF to provide good results



INFLO uses the notion of influence space to better describe neighborhoods around points

The influence space around a point includes its k-Nearest Neighbors and all points for which it is one of its k-Nearest Neighbors.

RNN_k is the reverse nearest neighbors.

$$IS_k(p) = RNN_k(p) \cup NN_k(p)$$

In the figure to the right, you see p 's three nearest neighbors are black, but it is the nearest neighbor of four green points.

$$INFLO_k(p) = \frac{den_{avg}(IS_k(p))}{den(p)}$$

Properties of Influenced Outlierness (INFLO)

Similar to LOF

Influenced Outlierness is close to 1 when in a cluster

Influenced Outlierness is much larger than 1 when an outlier.

Local Outlier Correlation Integral (LOCI)

Use the ε -neighborhood model instead of the kNN

An ε -neighborhood is all the points within ε of the point in question

Local density a point is the number of points in its ε -neighborhood.

Given an α , average neighborhood density of a point is calculated as the sum of the local ($\alpha\varepsilon$)-densities of all its neighbors.

The Multi-granularity Deviation Factor (MDEF) $den(p, \varepsilon, \alpha) = \frac{\sum_{q \in N(p, \varepsilon)} Card(N(q, \alpha \cdot \varepsilon))}{Card(N(p, \varepsilon))}$
is defined as follows.

$$MDEF(p, \varepsilon, \alpha) = \frac{den(p, \varepsilon, \alpha) - Card(N(p, \alpha \cdot \varepsilon))}{den(p, \varepsilon, \alpha)} = 1 - \frac{Card(N(p, \alpha \cdot \varepsilon))}{den(p, \varepsilon, \alpha)}$$

Multi-granularity Deviation Factor (MDEF)

Multi-granularity Deviation Factor is 0 for points in a cluster.

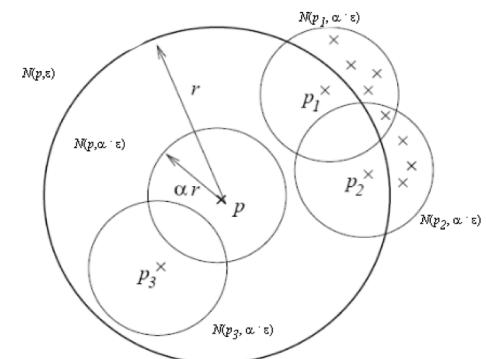
Multi-granularity Deviation Factor is greater than 0 for outliers.

Alternatively

$\sigma MDEF(p, \varepsilon, \alpha)$ is the normalized standard deviation of the densities of all points from $N(p, \varepsilon)$

Points further than 3 standard deviations away are outliers.

$MDEF > 3\sigma MDEF(p, \varepsilon, \alpha) \rightarrow \text{Outlier}$

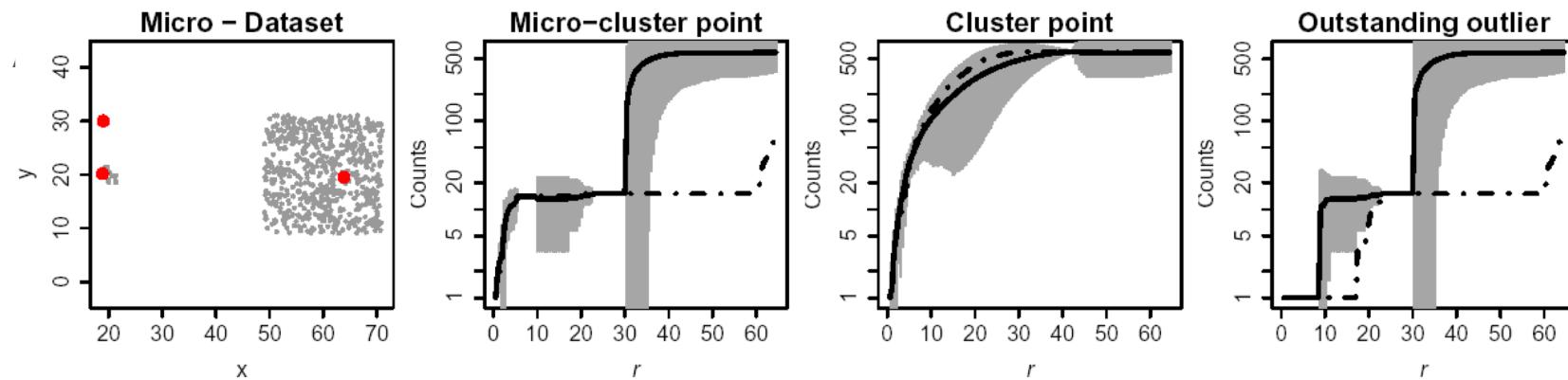


Local Outlier Correlation Integral (LOCI)

All values of ϵ are tested, thus automatically determined

In fact, the entire method is automatic and data-driven.

Deals with both local density and multiple granularities



aLOCI

Approximate the ε -neighborhood used in LOCI with a grid.

Each cell is square-width $2\alpha\varepsilon$.

Each cell sits inside the ε -neighborhood of its members.

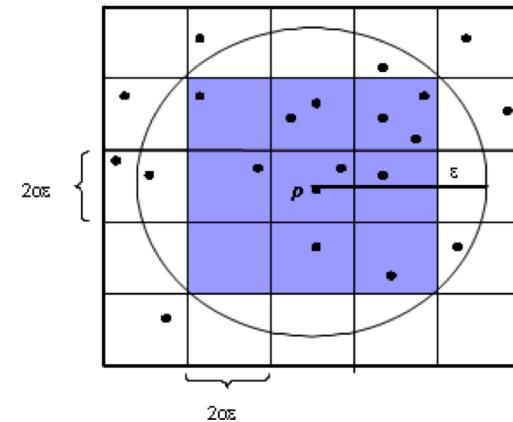
During iterative testing of different values of ε

Use a quadtree for to describe values $\varepsilon / 2$

This optimization efficiently separated every grid cell into four grid cells without much other modification.

In the equation to the right, c_j is the number of instances of the grid cell c .

$\zeta(p, \varepsilon)$ is the set of grid cells inside the ε -neighborhood.



$$Card(N(q, \alpha \cdot \varepsilon)) = \frac{\sum_{c_j \in \zeta(p, \varepsilon)} c_j^2}{\sum_{c_j \in \zeta(p, \varepsilon)} c_j}$$

Clustering-Based Outlier Detection

An object is an outlier if it doesn't belong to a cluster (or belongs to a rag-bag)

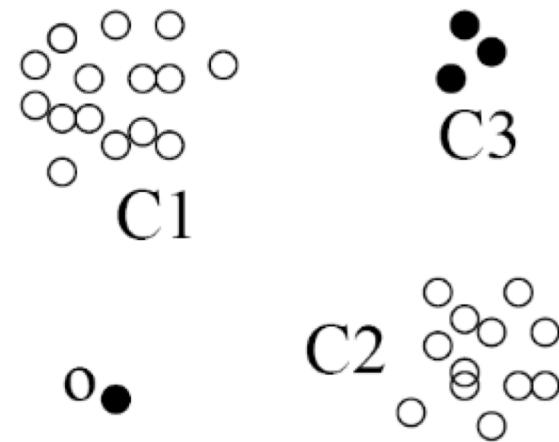
Cluster-based local outlier factor (CBLOF)

$$\text{CBLOF}(p) = (\text{size of the cluster of } p)(\text{similarity between } p \text{ and closest large cluster})$$

Large cluster could be p 's cluster if it's large.

In the figure to the right, o is an outlier because it has low similarity with its nearest large clusters.

In the figure to the right, the points in C_3 are outliers because their distance to the closest large cluster is vast and there's only 3 of them.



Properties of Cluster-based local outlier factor

Pros

Trains on unlabeled data

Works well on many types of data

Once clusters are computed, cluster centers and sizes are the only things involved in calculations.

Cons

Heavily dependant on clustering method

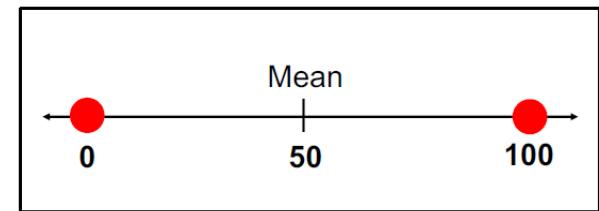
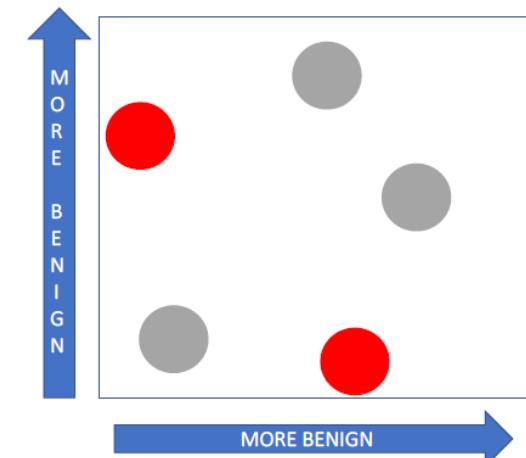
Therefore, it shoulders the high computation cost of clustering

Fixed-width clustering can be used as an $O(cn)$ method where c is the cluster count

May or may not produce sufficient quality clusters, but will produce them quickly

Limitation of Standard Techniques

- Require hyperparameter tuning
- **Direction-agnostic**(standard dev of +3 just as anomalous as -3)
- Alert if anomalous in only one dimension



Taken from https://www.usenix.org/sites/default/files/conference/protected-files/usenixsecurity17_slides_grant_ho.pdf

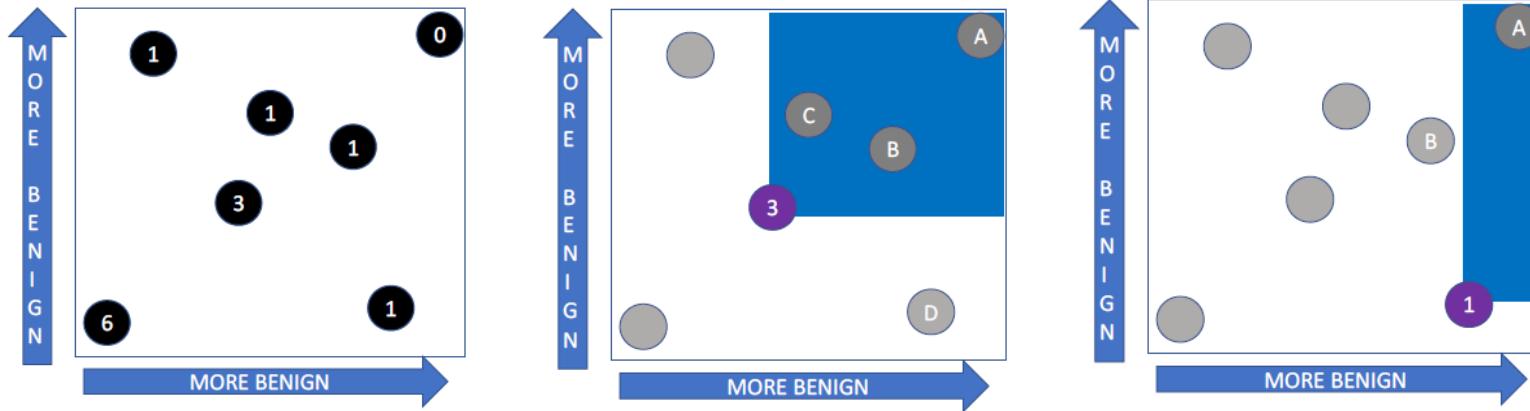
Directed Anomaly Scoring (DAS)

- simple, new method that overcomes these 3 problems
- Steps:
 1. Security analysts w/ limited time: specify B = alert budget
 2. For set of events, assign each event a “suspiciousness” score
 3. Rank events by their “suspiciousness”
 4. Output the B most suspicious events for security team

Taken from https://www.usenix.org/sites/default/files/conference/protected-files/usenixsecurity17_slides_grant_ho.pdf

Directed Anomaly Scoring

- Score(Event X) = # of other events that are as **benign** as X in **every** dimension
 - i.e., Large score = many other events are more benign than X



Taken from https://www.usenix.org/sites/default/files/conference/protected-files/usenixsecurity17_slides_grant_ho.pdf

DAS: Application on SpearPhishing Email Detection

- Real-time detector on 370 million emails over ~4 years
- Ran detector w/ total budget of **10 alerts/day**
 - Practical for LBL's security team (~240 alerts/day typical)
- Detected **17 / 19** spearphishing attacks (89% TP)
 - **2 / 17** detected attacks were *previously undiscovered*
- Best classical anomaly detection: **4/19** attacks for same budget
 - Need budget \geq **91 alerts/day** to detect same # of attacks as DAS

Taken from https://www.usenix.org/sites/default/files/conference/protected-files/usenixsecurity17_slides_grant_ho.pdf

References

1. Ho, Grant, et al. "Detecting Credential Spearphishing Attacks in Enterprise Settings." *USENIX security symposium*. 2017