Automated email generation for targeted attacks using natural language

An Example Malicious Generated Email


With an increasing number of malicious attacks, the number of people and organizations falling prey to social engineering attacks is proliferating. Despite considerable research in mitigation systems, attackers continually improve their modus operandi by using sophisticated machine learning, natural language processing techniques with an intent to launch successful targeted attacks aimed at deceiving detection mechanisms as well as the victims. We propose a system for advanced email masquerading attacks using Natural Language Generation (NLG) techniques. Using legitimate as well as an influx of varying malicious content, the proposed deep learning system generates fake emails with malicious content, customized depending on the attacker’s intent. The system leverages Recurrent Neural Networks (RNNs) for automated text generation. We also focus on the performance of the generated emails in defeating statistical detectors, and compare and analyze the emails using a proposed baseline.

In TACOS Workshop co-located with LREC
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.

Avisha Das
Avisha Das
Research Fellow

My research interests include natural language understanding and generation with a focus on Biomedical NLP and AI Security.